Problem with a solution proposed by Arkady Alt , **San Jose** , **California**, **USA** Let $T_n(x)$ be the polynomial defined by recurrence $T_{n+1} = 2x \cdot T_n - T_{n-1}$, $n \in \mathbb{N}$, and

initial conditions $T_0 = 1$, $T_1 = x$ (First Kind Chebishev's Polynomials). Find all natural *n* for which holds inequality:

 $T_n(x) \geq (2^{n-2} + 1)x^n - 2^{n-2}x^{n-1}, \quad x \in [1, \infty).$

Solution.

We will prove that inequality $T_n(x) \ge (2^{n-2} + 1)x^n - 2^{n-2}x^{n-1}$, $x \in [1, \infty)$ holds only for

 $n \in \{2, 3, 4, 5, 6, 7\}.$ Denote $R_n(x) := T_n(x) - (2^{n-2} + 1)x^n + 2^{n-2}x^{n-1}$. We have $R_n(1) = 0$ for all natural *n* because $T_n(1) = 1, n \in \mathbb{N}$. Then $R_n(x)$ is divisible by $x - 1$ and that determine for any $n \in \mathbb{N}$ polynomial-quatient $Q_n(x) = \frac{R_n(x)}{x-1}$. Thus our problem becomes:

Find all natural *n* such that $Q_n(x) \geq 0$ for all $x \in [1,\infty)$.

Substitution $T_n(x) = R_n(x) + (2^{n-2} + 1)x^n - 2^{n-2}x^{n-1}$ in the recurrence for $T_n(x)$, give us recurrence for $R_n(x)$:

$$
R_{n+1} - 2xR_n + R_{n-1} = T_{n+1} - (2^{n-2} + 1)x^{n+1} + 2^{n-1}x^n - 2x T_n + (2^{n-1} + 2)x^{n+1} - 2^{n-1}x^n + T_{n-1} - (2^{n-3} + 1)x^{n-1} + 2^{n-3}x^{n-2} = x^{n+1} - (2^{n-3} + 1)x^{n-1} + 2^{n-3}x^{n-2} = x^{n-2}(x^3 - (2^{n-3} + 1)x + 2^{n-3}) = x^{n-2}(x-1)(x^2 + x - 2^{n-3})
$$
 and $R_1(x) = \frac{1-x}{2}$, $R_2(x) = 2x^2 - 1 - 2x^2 + x = x - 1$.

Hence, we have for $Q_n(x)$ recurrence

(1)
$$
Q_{n+1}(x) = 2xQ_n(x) - Q_{n-1}(x) + x^{n-2}(x^2 + x - 2^{n-3}), n \ge 2
$$

with initial conditions $Q_1(x) = -\frac{1}{2}, Q_2(x) = 1$.

Using recurrence (1), we obtain that for all $x \in [1,\infty)$:

 $Q_3(x) = x(x+3) > 0$, $Q_4(x) = 3x^3 + 7x^2 - x - 1 > 0$, $Q_5(x) = 7x^4 + 16x^3 - 4x^2 - 5x > 0$, $Q_6(x) = 15x^5 + 33x^4 - 12x^3 - 10x^2 > 0$, $Q_7(x) = 31x^6 + 67x^5 - 39x^4 - 36x^3 + 4x^2 + 5x > 0$. So, obtain that for $n \in \{2, 3, 4, 5, 6, 7\}$ and $x \in [1, \infty)$ holds $Q_n(x) \ge 0$.

Denoting $q_n := Q_n(1)$, we get recurrence for q_n :

 $q_{n+1} - 2 q_n + q_{n-1} = 2 - 2^{n-3}, n \ge 2$

and $q_1 = -\frac{1}{2}$ $\frac{1}{2}$, $q_2 = 1$. Solving this recurrence we obtain $q_n = n(n-1) - 2^{n-2}$ for $n \in \mathbb{N}$.

From that follow $q_n < 0$ for all $n \geq 8$.

 $(q_3 = 4, q_4 = 8, q_5 = 12, q_6 = 14, q_7 = 10, q_8 = -8 \text{ and } q_n < 0 \text{ for all } n \ge 8 \text{ by Math.}$ Induction .

From sign preservation property of polynomials follow that there is some $\varepsilon > 0$ such that

 $Q(x) < 0$ for all $t \in (1, \varepsilon)$.